

Early feasibility assessment:
using biosimulation to guide
design and prioritization
in early discovery

Piet van der Graaf

Certara

Senior Vice President, Quantitative
Systems Pharmacology

Early Feasibility Assessment:

Using Biosimulation to guide
Design and Prioritization in Early
Discovery

Piet van der Graaf. PharmD, PhD

Senior Vice President and Head of Quantitative Systems Pharmacology

Professor of Systems Pharmacology, Leiden University Professor of Pediatrics, Cincinnati Children's Hospital Medical Center Editor-in-Chief Clinical Pharmacology & Therapeutics

Certainty Discovery, Frankfurt 5 November 2025

CERTARA

Model-Informed Drug Development (MIDD)

RJ Anziano², TC Stock⁹ au

2007

Model-based Drug Development

RL Lalonde¹, KG Kowalski², MM Hutmacher¹, W Ewy², DJ Nichols¹, PA Milligan¹, BW Corrigan¹, PA Lockwood¹, SA Marshall¹, LJ Benincosa¹, TG Tensfeldt¹, K Parivar¹, M Amantea¹, P Glue¹, H Koide¹ and R Miller¹

Trial performance PK-PD and desiste models Ocanitative decision orders Competitor information and meta-analysis Data analysis Design and trial excellent models

Figure 2 Six components of MBDD.

2013

Model-Based Drug Developmer Systems 'ational Approach to Efficient ative Systems 'ational Approach to Efficiency Systems 'atio

\$70M total savings in first year

2025

Impact of Model-Informed Drug Development on Drug Development Cycle Times and Clinical Trial Cost

Vaishali Sahasrabudhe 1... ⊙, Timothy Nicholas ¹, Gianluca Nucci², Cynthia J Musante² ⊙ and Brian Corrigan³ ⊙

\$5M & 10 months savings per program

INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE

ICH HARMONISED GUIDELINE

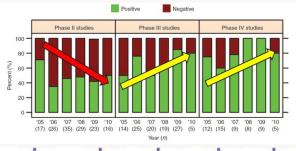
GENERAL PRINCIPLES FOR MODEL-INFORMED DRUG DEVELOPMENT

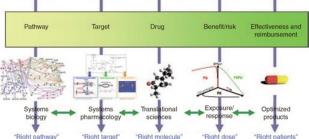
M15

Quantitative Systems Pharmacology (QSP)

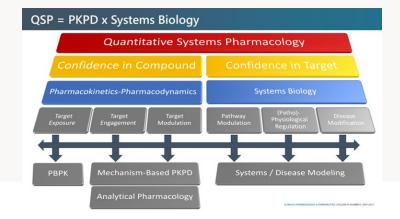
Model-Based Drug Development: A Rational Approach to Efficiently Accelerate Drug Development

PA Milligan¹, MJ Brown², B Marchant^{3,10}, SW Martin¹, PH van der Graaf^{4,1}, N Benson^{4,11}, G Nucci², DJ Nichols⁵, RA Boyd⁶, JW Mandema⁷, S Krishnaswami⁶, S Zwillich⁸, D Gruben², RJ Anziano², TC Stock⁸ and RL Lalonde⁶





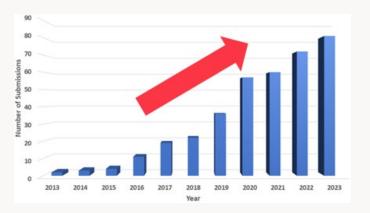
- A mechanistic bio-simulation approach that combines computational modeling and data to examine the quantitative relationship between a drug, the biological system, the disease process and a biomarker or clinical readout
- Re-usable platform models that integrate literature, data and knowledge of biology, pharmacology and disease
- Human models: allow for simulation of virtual trials and generation of virtual patients



Regulatory Adoption of QSP

```
Landscape of regulatory quantitative systems pharmacology submissions to the U.S. Food and Drug Administration: An update report

Jane P. F. Bai | Guansheng Liu | Miao Zhao | Jie Wang | Ye Xiong | Tien Truong | Justin C. Earp | Yuching Yang | Jiang Liu | Hao Zhu | Gilbert J. Burckart
```



QSP Aligned with Regulatory NAM Initiatives

FDA NEWS RELEASE

FDA Announces Plan to Phase Out Animal Testing Requirement for Monoclonal Antibodies and Other Drugs

For Immediate Release: April 10, 2025

Advanced Computer Simulations: The roadmap encourages developers to leverage
computer modeling and artificial intelligence to predict a drug's behavior. For
example, software models could simulate how a monoclonal antibody distributes
through the human body and reliably predict side effects based on this distribution as
well as the drug's molecular composition. We believe this will drastically reduce the
need for animal trials.

New Approach
Methodology (NAMs)
Strategies

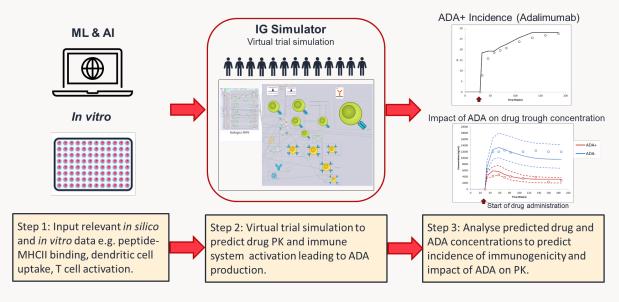
Transform your drug development with NAMs Strategy & Regulatory Support

https://www.certara.com/solutions/non-animal-navigator/nam-strategies/

In Silico NAM: Predicting Clinical Immunogenicity

Front. Immunol. 16:1677925. doi: 10.3389/fimmu.2025.1677925

Towards new approach methodologies for biological therapeutics: a novel model-informed metric to assess immunogenicity risk

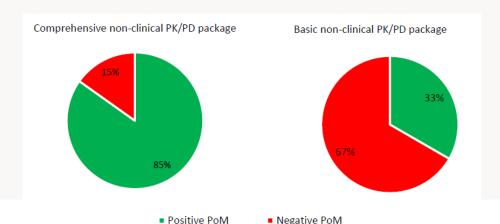


IG Simulator correctly predicts impact of ADAs on PK in ~80% of cases

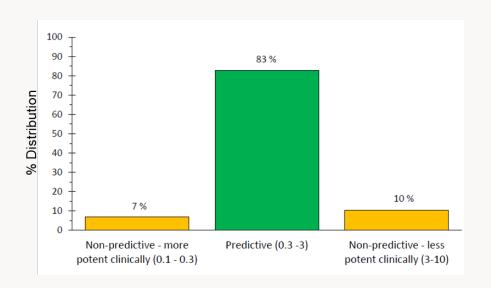
Preclinical Bio-Simulation Increases Probability of Clinical Success ~3-fold

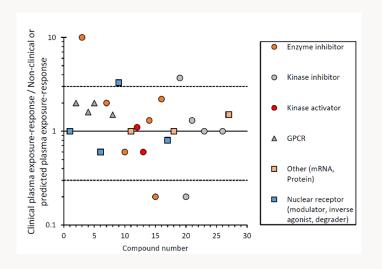
Drug Discovery Today • Volume 30, Number 7 • July 2025

Translational PK/PD: a retrospective analysis of performance and impact from a drug portfolio



Preclinical Bio-Simulation Predicts Clinical Exposure



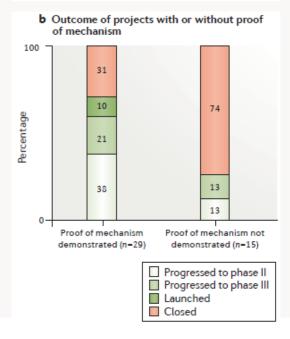


Preclinical Bio-Simulation Improves Overall Success

Probability
Proof of Mechanism

13-fold

Impact of a five-dimensional framework on R&D productivity at AstraZeneca



Attrition $74\% \rightarrow 31\%$

Mechanistic PK/PD modeling to address early-stage biotherapeutic dosing feasibility

Joshuaine Grant[†], Fei Hua[†], Joshua F. Apgar, John M. Burke, and Diana H. Marcantonio

Early Feasibility Assessment (EFA)

Platform-based bio-simulation workflow to address key questions in early discovery

What is the optimal target in a biological pathway?

Is it better to target the ligand or the receptor?

Is it feasible to achieve the intended pharmacology in the clinic?

What are the required drug properties to achieve the desired pharmacology at feasible doses?

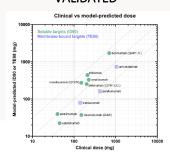
EFA requires no *in vivo* animal data, no *in vitro data*, no compounds

FIT FOR PURPOSE

Aligned with drug discovery requirements and cycle times:

- Consistent, reliable
- Turnaround days-weeks

VALIDATED



IMPACT

- Shorten discovery timelines
- Better clinical candidates
- Kill early: redirect resources to back the winners

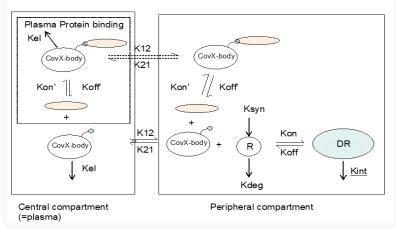
RETURN ON INVESTMENT

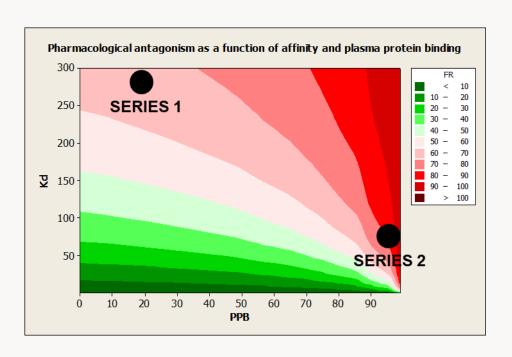
EFA at scale can save \$10-\$100M at portfolio level

EFA Case Study 1: Fusion Protein for Immunology/Pain

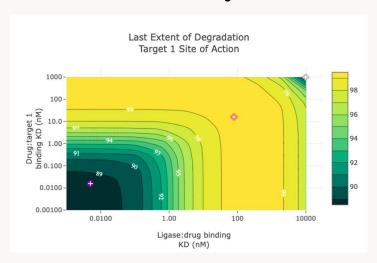
- EFA applied to guide chemistry strategy
- Resulted in change of priority from series 2 to series 1

Systems Pharmacology model for CovX



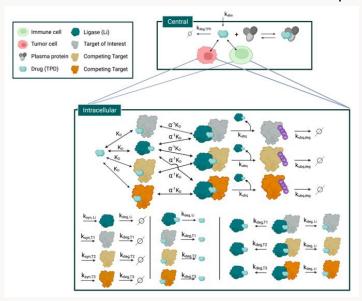


EFA Case Study 2: PROTACs



EFA identifies the optimum value for E3 Ligase and Substrate for a PROTAC

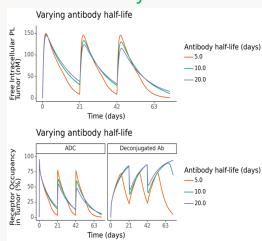
Complex modalities can have trade offs between parameters



With combinatorial drug design spaces, it is impractical to explore the space experimentally. Modeling increased the chance of success by focusing on the feasible design space.

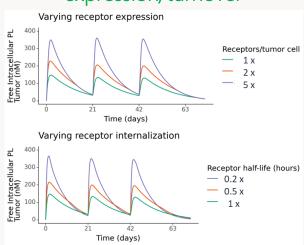
EFA Case Study 3: ADCs

Antibody half life



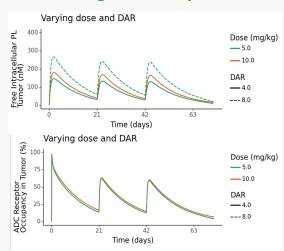
 Increasing drug half-life could lead to decreasing efficacy due to competition from the naked-antibody

Target expression/turnover



 Increasing target expression level and internalization rate can both lead to increased efficacy

Drug-Antibody Ratio

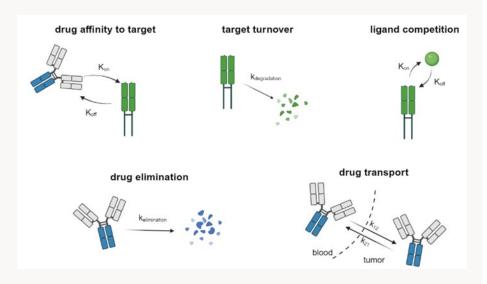


- Once antibody binding is saturated, increasing the dose will not increase the efficacy further, while toxicity may continue to increase
- Increasing DAR allows a bigger increase in efficacy compared to dose increase

EFA Case Study 4: Bispecific mAbs

Goal: use EFA **at scale** to efficiently identify the bispecific drug properties that will match metrics of monospecific clinical competitors <u>before</u> building the molecules

- ~30 Bispecifics tested in 5 Indications
- ~5 Million simulations
- Delivered in ~6 months



EFA Case Study 4: Bispecific mAbs

					Monthly dosing		1	1.5 month dosing			2 month dosing			Clinical evidence Tier		
Molecule	Target Pair	Valency	Indication	SoA	Kd1	Kd2	t1/2	Kd1	Kd2	t1/2	Kd1	Kd2	t1/2	Target 1	Target 2	
1	AxB															
, , , , , , , , , , , , , , , , , , ,	AXB															
2				·												
3																
4																
5																
6																
7																
8																
9																

Most favorable	Intermediate	Less favorable	Infeasible/ least favorable
KD ≥ 100 nM	KD 10 - 99 nM	KD < 10 nM	KD None
T1/2 10 days	T1/2 20 days	T1/2 30 days	T1/2 None
Clinical evidence Approved/effic. dose in desired indication, PK avail.	Clinical evidence Effic. or MAD doses in desired indication; PK avail. is mixed	Clinical evidence Non-target indication, PK avail is mixed	Clinical evidence None

Balancing valency, affinity, half lives with dosing schedule

					Schedule:	SC Q4W			SC Q6W				SC Q8W				
Molecule	Target Pair	Modality	Lead indication	SoA	Valency:	1+1	1+2	2+1	2+2	1+1	1+2	2+1	2+2	1+1	1+2	2 + 1	2+2
x					10d												
					20d												
					30d												
					42d												

Color key (i.e., darker = better):

Feasible with **both Kds ≥ 100 nM**

Feasible with **one** Kd < 100 nM

Feasible with **both** Kds < **100 nM**

Not feasible

Simulations across a portfolio of drug concepts can enable prioritization based on likelihood that the drug can achieve efficacy with desired dosing regimen and guide design

EFA

1. Quantifies Developability

2. Guides Design

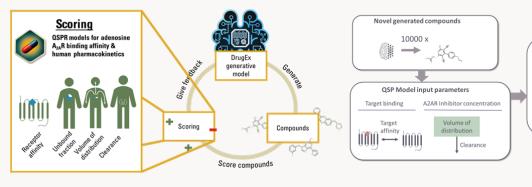
3. Ranks Clinical Confidence in Rationale

EFA requires no in vivo animal data, no in vitro data, no compounds

From EFA to QSP-Enabled Generative Drug Design

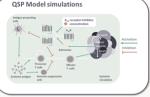
Integrating Pharmacokinetics and Quantitative Systems Pharmacology Approaches in Generative Drug Design

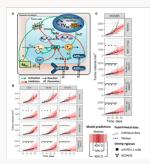
Helle W. van den Maagdenberg, Jikke de Mol van Otterloo, J. G. Coen van Hasselt, Piet H. van der Graaf, and Gerard J. P. van Westen*



Evaluation of Combination Strategies for the A_{2A}R Inhibitor AZD4635 Across Tumor Microenvironment Conditions via a Systems Pharmacology Model

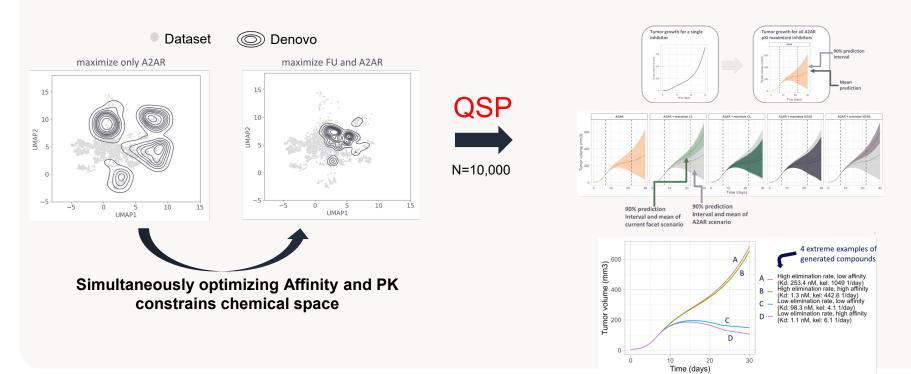
Veronika Voronova ", Kirili Peskov "", Yuri Kosinsky", Gabriel Helmlinger", Lulu Chu", Aksandra Borodovsky", Richard Woessner", Kris Sachsenmeier", Wenlin Shao', Rakesh Kumar", Gayle Poulior^e, Melinda Merchant^e, Holir Kimko[®] and Ganesh Muguno



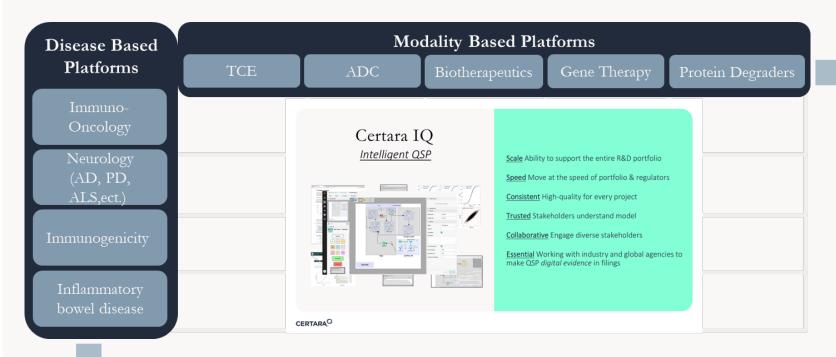


- Affinity, PK and clinical efficacy for 10,000 *denovo* compounds
- Safety could be integrated seamlessly

From EFA to QSP-Enabled Generative Drug Design



Certara has the largest library of validated EFA/QSP platform models in the industry



Why is EFA not used in every program?

Why would you need support from Certara?

Certara Applied BioSimulation (ABS): The Industry's leading QSP Center of Excellence

70+ 700+ 275+ 350+

QSP Scientists

Projects

Clients

Combined Years of Experience

