Unlocking the power of data from disparate sources – Elsevier's journey toward accurate reaction outcome predictions

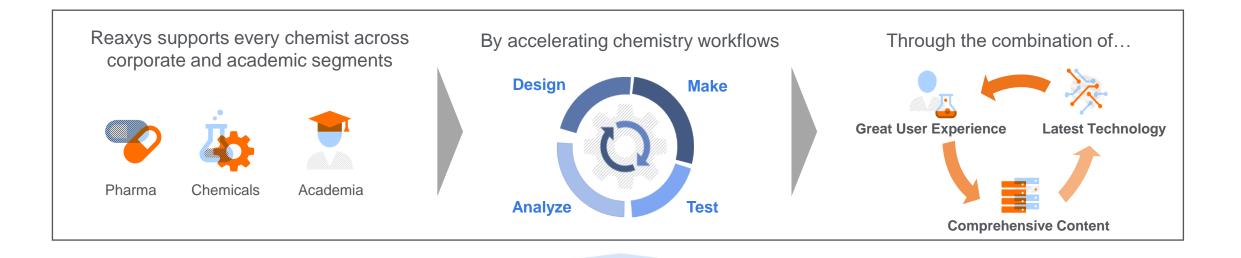
Timur Madzhidov

Elsevier

Senior Product Manager in Chemistry Innovation

ELSEVIER

Reaxys[®]


Unlocking the power of data from disparate sources: Elsevier's journey toward accurate reaction outcome predictions

<u>Timur Madzhidov,</u> David Wöhlert, Eric Gilbert, Frederik van den Broek

September 25, 2024

Reaxys, the most comprehensive, innovative and intuitive chemistry information system supporting customers' chemistry use cases and digital transformation needs

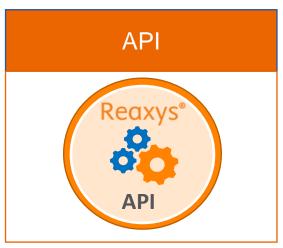


Monitor and Design			Mal	ke	Test and Analyze		
Competitive Intelligence	Novelty search	SAR, ADMET	Synthesis planning	PhysChem properties	Product analysis	Pharmacologica I profiling	

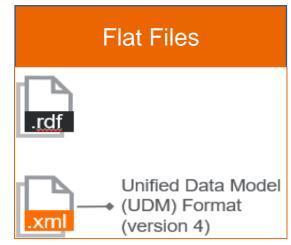
Reaxys today*

ELSEVIER

ELSEVIER

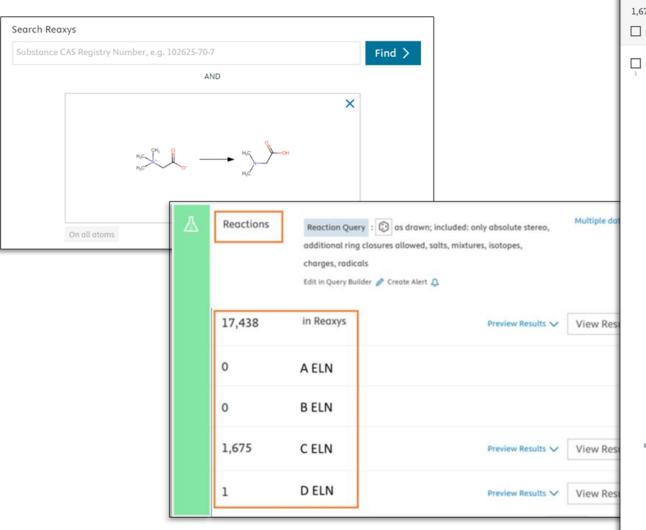

Credit: TechCrunch, August 8, 2019 Cultivated data is the next Gold Rush https://techcrunch.com/2019/08/08/cultivated-data-is-the-next-gold-rush/

Reaxys provides access to chemical data tailored to all possible use cases



		reaxy	s.com	
Filters		290 Substances 5,281 Documents	, 1,780 Reactions, 54 Targets	Reaxys - 290 🗸 🗸
Limit to > Exclude >		Urnit To Exclude Export Pre	A parations	
By Structure	~	Q O Q No of References 4		
Measurement pX	~		ephedrine	
Highest Clinical Phases	~	1 man from	CH3NHCH(CH3)CH(C4H3)OH 165-235 220	
Targets	~	Han	Identification	Preparations - 78
-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Druglikeness	Reactions - 1,409
Parameters	~		Bioactivity (AII)	Targets - 39
Substance Classes	~ (E Ø @ ≡ ₽	Physical Data - 165	Documents - 4,911 >
Molecular Weight	~		Spectra - 51 Other Data - 446	
Number of Fragments	~			
Availability	~	2	ephedrine hydrochloride C10H15NO*HCI 201.696 3915113 50-98-	6
Availability in other databases	~	HIN CI-H	Identification	Preparations - 18
Available Data	~	но 💭	Druglikeness	Reactions - 255
Document Type	~		Bioactivity (AII)	Targets - 14
	~	<i>E Ø</i> . @. ≡ №	Physical Data - 64	Documents - 383 >
Publication Year	\sim	P1 U1 01 = 010	Spectra - 18	Feedback 💭

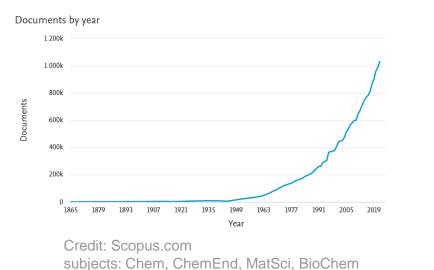
- Human friendly for everyday use
- All information accessible
- Search implemented
- Predictive **retrosynthesis** available
- Limited export available

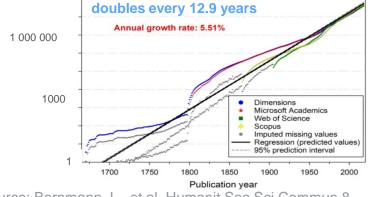

- **Machine-**friendly for embedding into internal pipelines
- Most of information accessible
- Search implemented
- Retrosynthesis and synthetic accessibility predictors available (as separate API)
- **Export**-friendly

- Machine readable format for ML/AI applications or internal data lakes
- Case-specific information accessible (bibliography, reactions, molecules/properties, bioactivities)
- Dataset delivered to user

Intuitive and integrated exploration of reactions using content integration

Reaxys - 17,438 A ELN - 0 B ELN - 0 C ELN - 1,675 D ELN - 1						
1,675 Reactions out of 0 Documents, containing 17 Substances □ ○ ○ ▲ ⊗ Limit To Exclude Export Hide Conditions Q O Q Ranking ↓ ∨						
1	, , , , , , , , , , , , , , , , , , ,		_s		* +) -	в
출 면 타···· · · · · · · · · · · · · · · · ·						
	Conditions A Find Similar >	Reaction ID: 981903 Open	in database '	Yield	Reference/Experimer	ıt
	platinum In dmso at 591.24896°C; under 829.5416 - 5005.5254 Torr; for 37.3183h; pH=2.295665 - 7.316745; argon;			A 8.7% B 74.8%	Oncology-FJ0 page 97 section 3 Experiment	
Experiment Procedure V NextMove Reaction Type: reduction MW Largest Product: 149.2134 g/mol				Scientist: Karen, How Experiment ID: Chem Project: Oncology Created: 2010-04-01-	n-79511-Notebook-39287a/r6	
	Experiment Type: synthesis type 3/w Identifiers: 22336(masterId); approved(Source: Central lab sourcing	status); [MA, FO, CB](qualifiers)			Modified: 2010-04-03 Experimental Data S	-04:00
Preparative: N Conclusion Phrase: completed Analytical Data Exists: N Avail			Availa	ble through		
	betaine + L-homocysteine => L-methionine + N,N-dimethylglycine original record (equation)					
	Additional Information on Reactants <u>Reactants</u>	s/Products				Show/Hide columns 🗸
	Name	Amount	Volume		Color	Equivalents
	CHEBI:17750 Details 🦻	0.0693 mol	0.948 l		blue	0.62
	CHEBI:58199 0.0538 mol 0.518 l Details 7			muddy	1.71	
Products Additional Information on Reagents/Solvents/Catalysts						
Reagents/Solvents/Catalysts						




ELSEVIER

Credit: TechCrunch, August 8, 2019 Cultivated data is the next Gold Rush https://techcrunch.com/2019/08/08/cultivated-data-is-the-next-gold-rush/

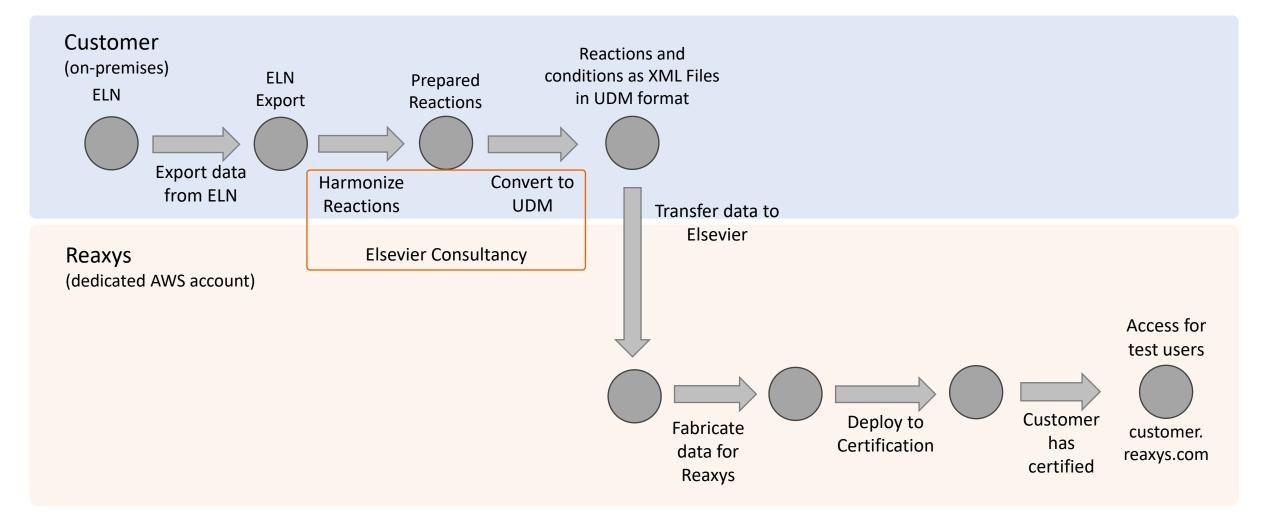
- Available data size increases exponentially
 - More efficient approaches required for annotation: programmatic extraction or increased costs
 - Infrastructure challenges: more efficient search approaches needed, bigger infrastructure
- Data representation
 - New previously unknown types of chemical compounds
 - **Rules change with time**: not a problem for visual perception but problem for ML/AI applications
 - **Diversity** in data representation in different sources: how to incorporate new data?

Amount of information

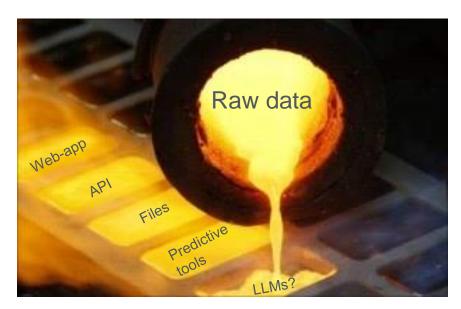
Source: Bornmann, L., et al. Humanit Soc Sci Commun 8, 224 (2021). https://doi.org/10.1057/s41599-021-00903-w

"Reaxys law":

Chemistry information doubles every 140 months (11.6 years) +7.1% annually Data from literature or Electronic Lab Notebooks is often experiment- or document-centric


- This leads to inconsistencies, duplications, etc.
- We need to follow Reaxys style in chemical data representation

Elsevier stock photo

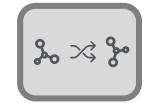

Content integration onboarding process

ELSEVIER

How can we support chemists applying ML/AI or chemoinformatics?

How should reaction data look like to enable easy modelling?

.


Can be processed by regular chemoinformatics software

Homogeneous representation

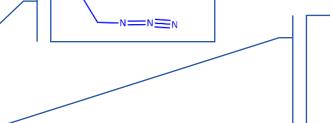
Free of obvious errors

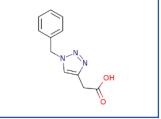
SMILES compatible

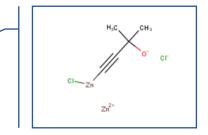
Atom mapped

Challenging cases:

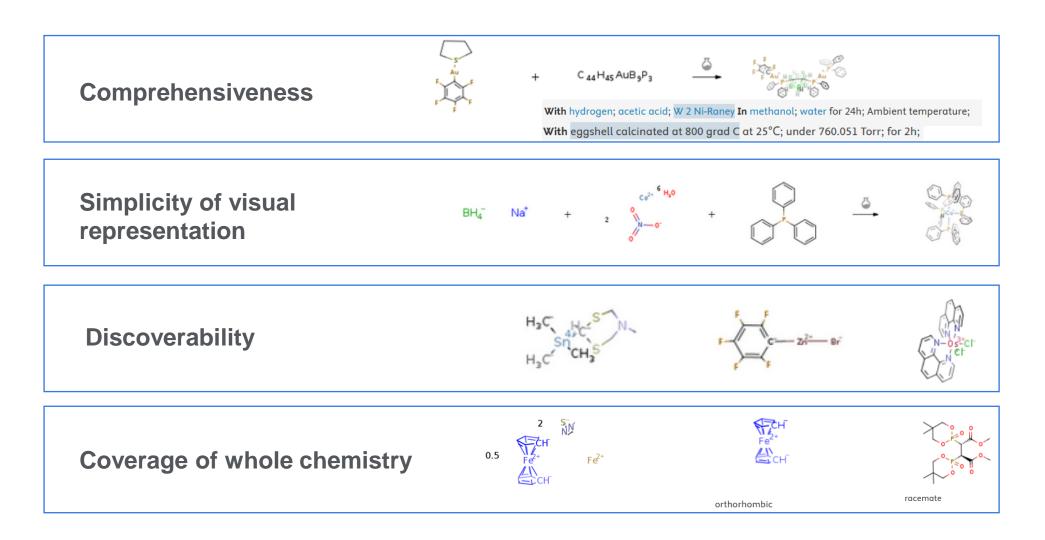
- Organometallics
- Inorganics
- Complexes
- Stereochemistry
- S-group fields

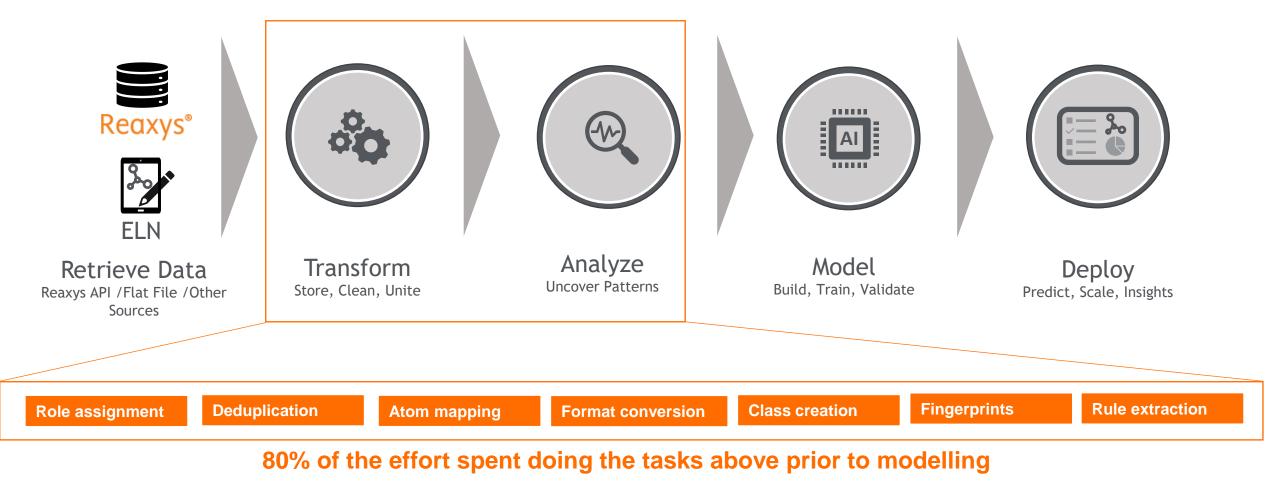

Challenging cases:


- Radicals
- Multiplicity
- Salts/mixtures
- Cycles
- Non-covalent bonds

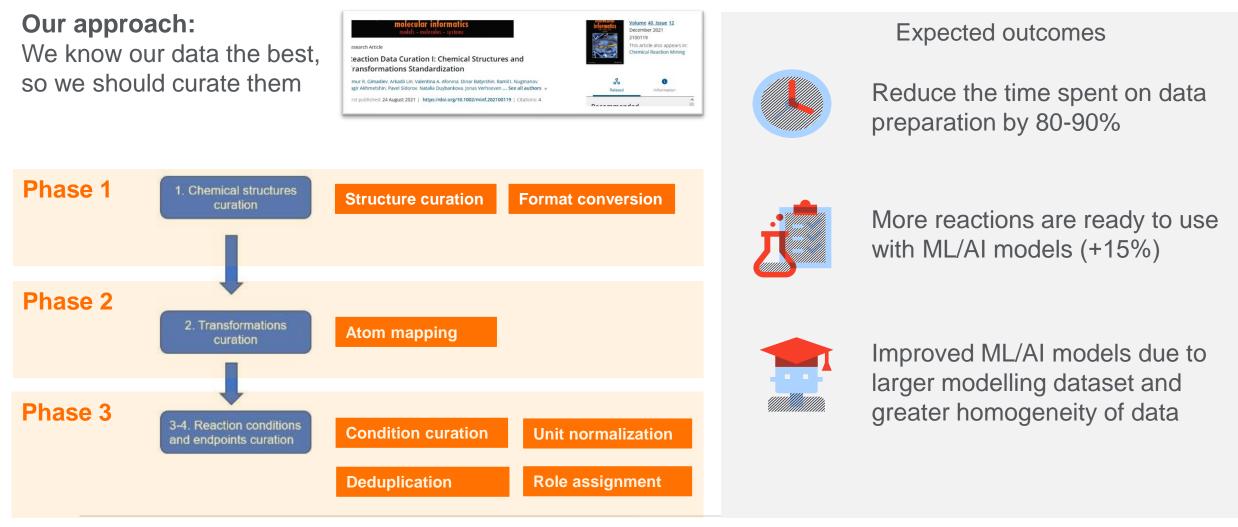

Reaxys reaction data:

- High-quality only manually annotated
- Comprehensive
- Well-curated
- Standardized
 - Functional group representation is unique
 - Kekule structures are given
 - Salts, mixtures, cocrustals are represented as one graph





Our drawbacks are consequences of our benefits... what is good for database is not good for modelling



Typical Data Science Workflow

ML-optimized RFF is an extension of Reaxys Flat File to support AI and ML initiatives

Structure curation workflow consists of "transformers" that change structure, and "filters" that delete irrelevant information

Structure transformers

- 1. Interpret internally used S-group fields
- 2. Standardization of organometallics
- 3. Remove explicit hydrogen preserving stereochemistry and valence
- 4. Split reaction with concurrent products

Filters

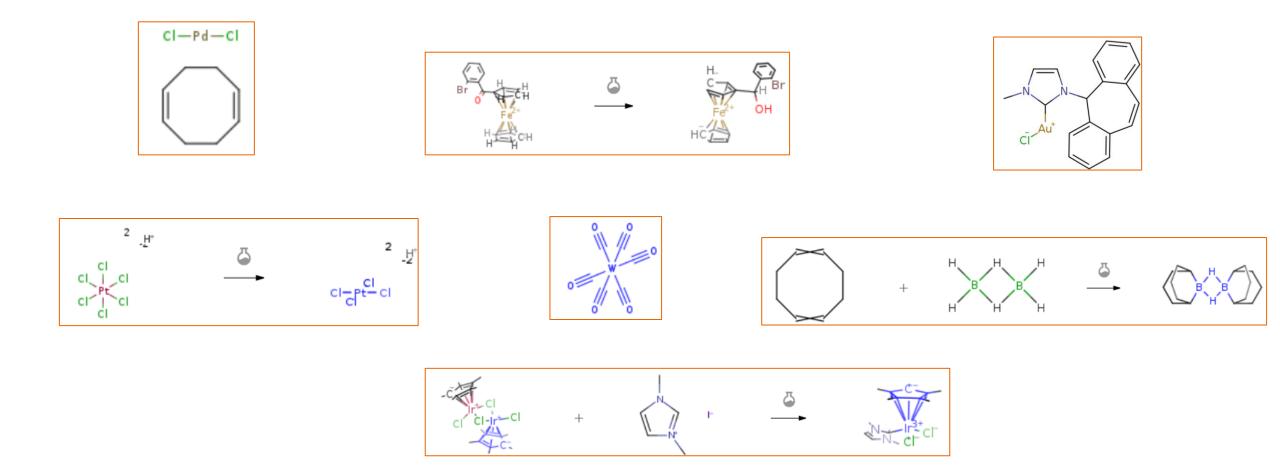
- 1. Delete reactions w/o reactants or products
- 2. Delete reactions with same reactants and products
- 3. Delete reactions leading to error by chemoinformatics software

Reaxys[®] ML-optimized reaction flat files

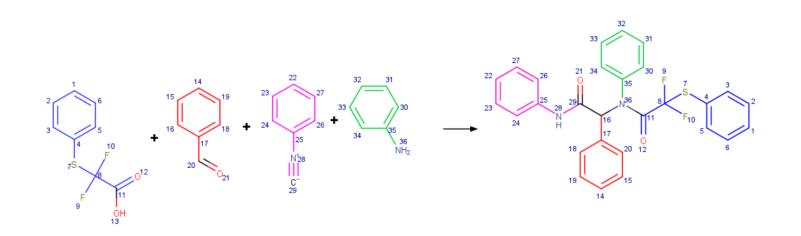
Some statistics for structure curated dataset

Initial file	22.8M
Final file	24.8M
Remove Data Sgroup	10.9M
Split Multi Product	4.5M
Remove Explicit H	4.4M
Resolve Fragment Multiplicity	1.1M
Interpret molecular charge	0.3M
Remove Unstructured	0.4M
Organometallics	0.3M
SMILES conversion filter	0.2M
No reaction filter	39K
Half-reaction filter	23K

Pending.AI feedback:

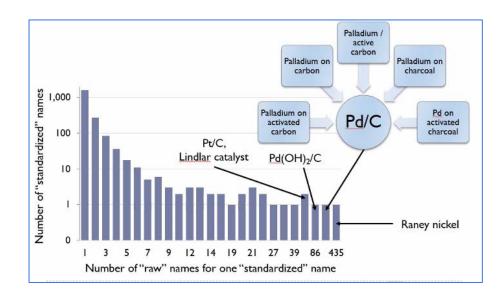

- Increased number of reactions available for modelling (+12%)
- Increased number of generated rules for retrosynthesis planning (+17%)
- Increased rule coverage (+1.2%, from 93.2% to 94.4%)
- Simplified processing no script failures
- More routes suggested by retrosynthesis solution (+5%)

Questions to community: how to represent these compounds? Chemical conventions contradict chemoinformatics software capabilities



Phase 2: find best atom-to-atom mapping solution and develop atom mapping pipeline

"One-to-one correspondence between atoms of reactants and products that reflects reaction mechanism"


Homogeneous rather than chemically correct

Research Article Atom-to-atom Mapping: A Be Mapping Algorithms and Con	Nolume 41, Issue 4 April 2022 2100138 This article also appears in Chemical Reaction Mining	
Arkadii Lin, Natalia Dyubankova, Timur I. Madzh Timur R. Gimadiev, Valentina A. Afonina, Zarina	idov, Ramil I. Nugmanov, Jonas Verhoeven, Ibragimova, Assima Rakhimbekova See all authors ~	Advertisement
	Processed*	% Correct*
Mapper 1	100.00	83.33
Mapper 2	100.00	76.16
Mapper 3	100.00	74.53
Mapper 4	100.00	74.43
Mapper 5	99.24	73.15
Mapper 6	100.00	72.79
Mapper 7	100.00	72.66
Mapper 8	99.51	53.95
Mapper 9	100.0	83.93
Mapper 10	100.0	84.2

* On Reaxy'fied dataset from Lin et al (2022) Mol.Inf., 2100138

Normalization of compound names

Compound role reconsideration (catalyst/reagent/solvent)

Normalization of numerical fields (T, p, yield)

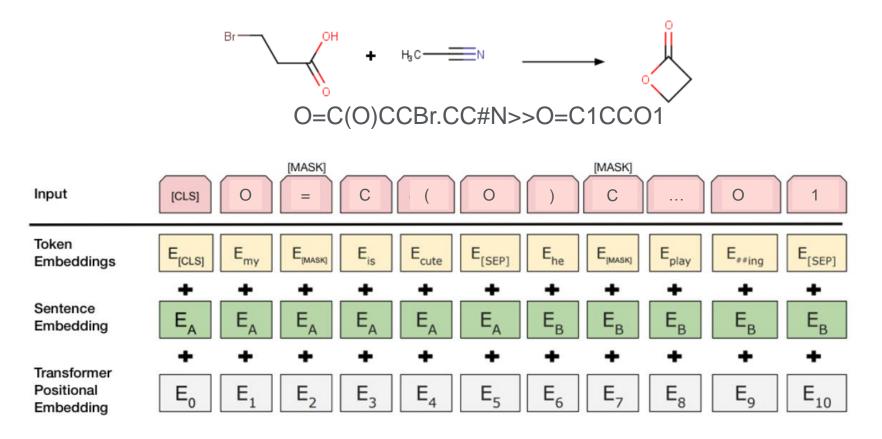
Deletion of conditions corresponding to multi-step reactions

Use case for curated reaction dataset

Eric Gilbert David Wohlert Frederik van der Broek In collaboration with:

Objective

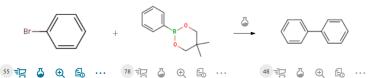
> **Goal**: Create a model to predict reaction success (classification: yield \geq 5%).


Data: Reaxys reaction SMILES for pretraining, Suzuki HTE dataset for benchmarking & Janssen Electronic Notebook (ELN) for fine-tuning

Why use ELN data to fine-tune model?

- > literature yields biased, not always reliable.
- > ELN data contains more lower-yielding rxns.

By substitution of text to SMILES one can create embedding of reaction



Neves, P., *et al.* (2023). *J Cheminf.* <u>https://jcheminf.biomedcentral.com/articles/10.1186/s13321-023-00685-0</u> Philippe Schwaller *et al* 2021 *Mach. Learn.: Sci. Technol.* **2** 015016 Picture from publication: https://arxiv.org/pdf/1810.04805

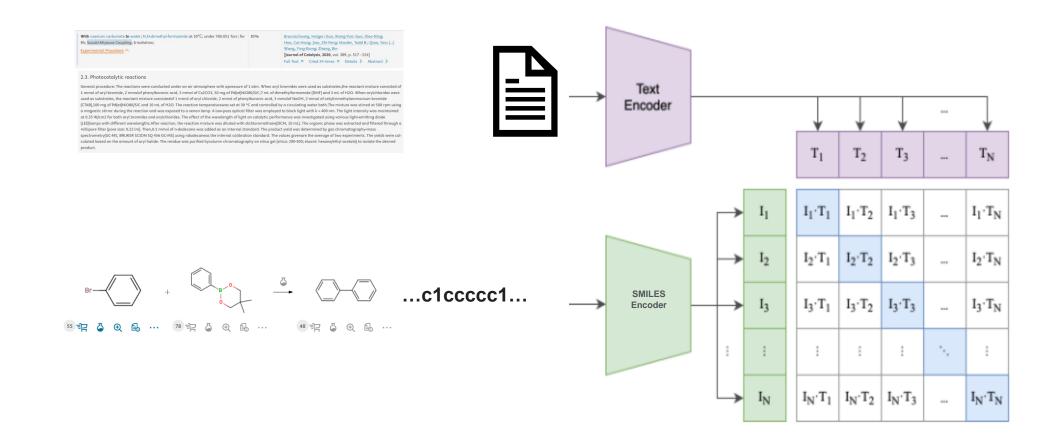
How can we improve the model?

- Add chemical knowledge!
 - -Add context from text reaction description

 With coesium carbonate In water; N,N-dimethyl-formomide at 30°C; under 760.051 Torr; for
 85%

 8h; Suzuki-Miyaura Coupling; Irradiation;
 Experimental Procedure ^

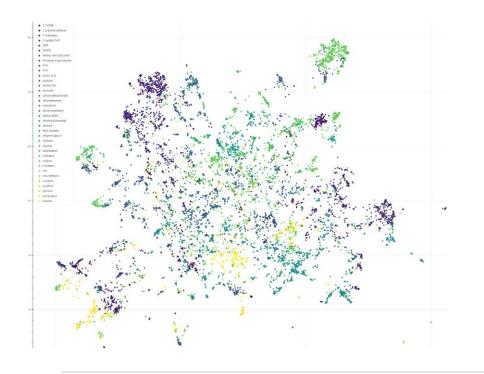
Braunschweig, Holger; Guo, Xiang-Yun; Guo, Xiao-Ning; Hao, Cai-Hong; Jiao, Zhi-Feng; Marder, Todd B.; Qiao, Yan; (... Wang, Ying-Xiang; Jang, Bin Jjournal of Catalysis, 2020, vol. 389, p. 517 - 524] Full Text R Cited 24 times R Details > Abstract >


2.3. Photocatalytic reactions

General procedure: The reactions were conducted under an air atmosphere with apressue of 1 atms. When any bromides were used as substrates, the reactant mixture consisted of 1 mmol of any lot of any bornide, 2 mmol of phenylboronic acid, 3 mmol of Cs2CO3, 50 mg of Pd(at)(N080)SiC, 7m L of dimethylformamide (DMF) and 3 mL of H2O. When anylchlorides were used as substrates, the reactant mixture consisted of 1 mmol of anyl chloride, 2 mmol of phenylboronic acid, 3 mmolof NaOH, 2 mmol of cetyltrimethyliammonium bromide (CrAB),100 mg of Pd(at)(N080/SiC, 7m L of dimethylformamide (DMF) and 3 mL of H2O. The reaction temperaturewas set at 30 °C and controlled by a circulating water bath. The mixture was stirred at 500 rpm using a magnetic stirrer during the reaction and was exposed to a xenon lamp. A low-pass sptical filter was employed to block lipht with k < 400 nm. The lipht intensity was maintained at 0.35 W/cm2 for both anyl bromides and anylchlorides. The effect of the wavelength of light on catalylic performance was investigated using various light-emitting diade (LED)(apps with different wavelengths. After reaction, the reaction mixture was slitted with dichloromethane(DCM), 0 mL). The argonic phase was extracted and filtered through a sptice startes are product, yield was determined by gas chromotargraphy-mass spectrometry(GC-M5, BRUKER SCION SQ 456 GC-M5) using andodecanes the internal calibration standard. The values givenare the average of two experiments. The yields were calculated based on the amount of anyl halde. The residue was purified bycolumn chromatography on silica gel (silics: 200-30; eluant: hexane/ethyl acetate) to isolate the desired product.

-Add context by augmenting pretraining task

Adding chemical context from reaction description: encoders that describe reaction procedure and SMILES are trained together to minimize the distance between actual text and SMILES embedding

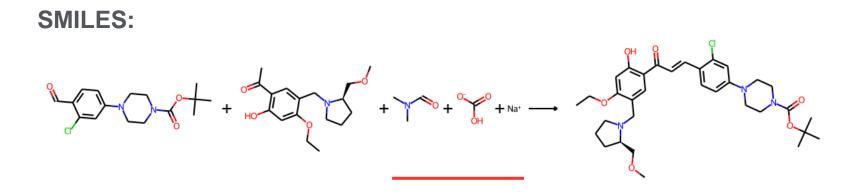


Reaction SMILES space reflects conditions!

Reaction space coloured by solvent used

 Reactions in certain solvent are clustered together

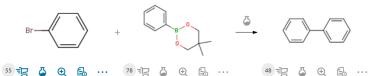
Retrieval of the suitable procedures for reaction


Embeddings of procedure texts

Metric	Precision@K
Text-to-SMILES @1	0.495
SMILES-to-Text @1	0.492
Text-to-SMILES @10	0.859
SMILES-to-Text @10	0.876
Text-to-SMILES @50	0.956
SMILES-to-Text @50	0.968

The model can be used to spot inconsistencies in data

• Cosine similarity between SMILES and text embeddings: -0.227


Text:

Add 303mg B-122 to 4ml EtOH, then add 221mg KOH, 640mg B-10, stir at RT, and monitor LC-MS until there is no B-122 left.

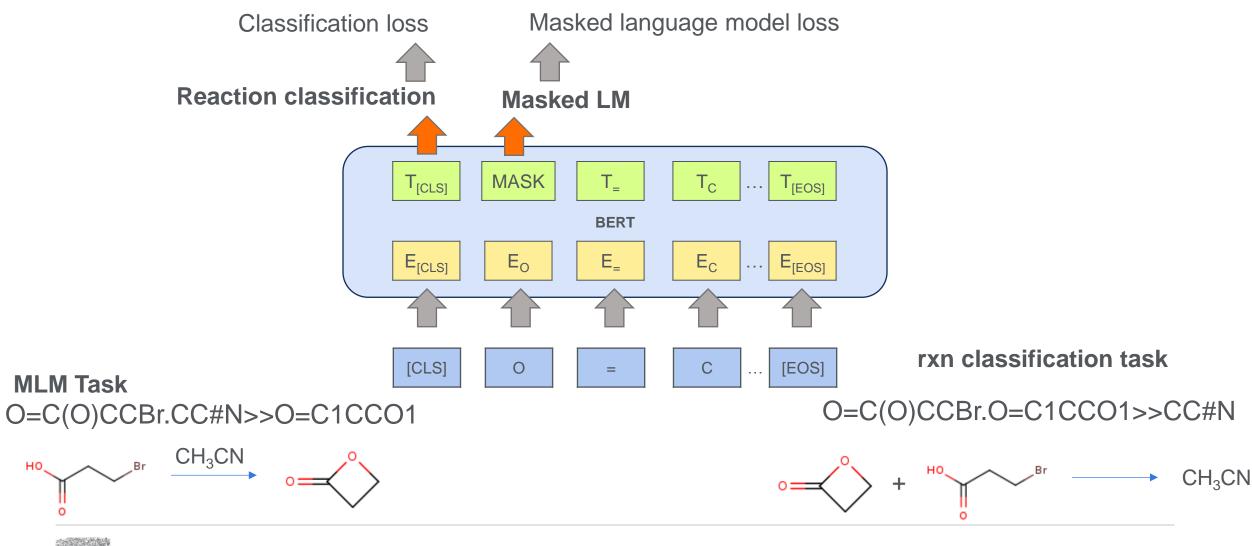
How can we improve the model?

- Add chemical knowledge!
 - -Add context from text reaction description

 With coesium carbonate In water; N,N-dimethyl-formamide at 30°C; under 760.051 Torr; for
 85%

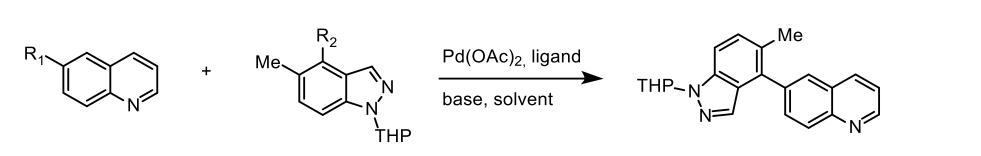
 Sh; Suzuki-Miyaura Coupling; Irradiation;
 Experimental Procedure ^

Braunschweig, Holger; Guo, Xiang-Yun; Guo, Xiao-Ning; Hao, Cai-Hong; Jiao, Zhi-Feng; Marder, Todd B.; Qiao, Yan; (... Wang, Ying-Xiang; Zhang, Bin [Journal of Catalysis, 2020, vol. 389, p. 517 - 524] Full Text A Cited 24 times A Details > Abstract >


2.3. Photocatalytic reactions

General procedure: The reactions were conducted under an air atmosphere with apressure of 1 atms. When any biomides were used as substrates, the reactant mixture consisted of 1 mmol of any biomide, 2 mmolof phenylboronic acid, 3 mmol of 622CO3, 50 mg of Pála(1)/k080/SiC, 7m L of dimethylformamide (DMF) and 3 mL of H2O. When anylchorides were used as substrates, the reactant mixture consisted of 1 mmol of anyl chloride, 2 mmol of phenylboronic acid, 3 mmolof NaOH, 2 mmol of cetyltrimethylammonium bromide (CTAB), 100 mg of Pála(1)/k080/SiC and 10 mL of H2O. The reaction temperaturewas set at 30 °C and controlled by a circulating water bath. The mixture was stirred at 500 rpm using a magnetic stirrer during the reaction and was exposed to a xeno Intern. A low-pass optical filter was employed to block light with k < 400 nm. The light intensity was anintalined at 0.35 W/cm2 for both anyl bromides and anylchlorides. The effect of the wavelength of light on catalytic performance was investigated using various light-emitting diade (LED)(amps with different wavelengths. After reaction, the reaction mixture was alluted with dichloromethane(DCM, 10 mL). The organic phase was extracted and filtered through a spectrometry(GC-M5, BRUKER SCION SQ 456 GC-M5) using andoeconess the internal calibration standard. The values givenare the average of two experiments. The yields were calculated based on the amount of anyl halide. The residue was purified bycolumn chromatography on silica gel (silics: 200-300; eluant: hexane/ethyl acetate) to isolate the desired product.

-Add context by augmenting pretraining task



Augmented Pretraining of BERT Model: train model not only to predict masked token in reaction SMILES but also predict whether reaction looks reasonable

Model shows the best quality of prediction on Suzuki Reaction Benchmark

Base model	MSE loss	R ²
MLM-only pretrain	0.19 ± 0.01	0.80 ± 0.01
Dual pretrain	0.17 ± 0.01	0.82 ± 0.01
² Schwaller rxnfp		0.79 ± 0.01
Schwaller rxnfp fine- tuned on CLS task		0.81 ± 0.01

Perera et al., Science 359, 429–434 (2018)
 Philippe Schwaller *et al* 2021 *Mach. Learn.: Sci. Technol.* 2 015016

5760 reactions¹

11 ligands6 boronic acids4 aryl halides7 bases4 solvents

Conclusions

- Data should be standardized by data provider
- Let's discuss what is the best way to represent data for modelling!
 - Standardization for ML applications might be different from the one used for data representation
 - There is fundamental gap between data representation in databases, "chemical beauty", and chemoinformatics software capabilities
- Model quality can be further improved by incorporation of cross-domain data and knowledge

Thank you

E-mail: t.madzhidov@elsevier.com

E-business card:

Unlocking the power of data from disparate sources – Elsevier's journey toward accurate reaction outcome predictions

Timur Madzhidov

Elsevier

Senior Product Manager in Chemistry Innovation