

0 - - 0 - 0 - -000--000--00-0000-00 -00-0-00-0 -0-00-0-00 -00-0-00-0 0--000--00 0000-0000-0--0-0--0--000--000-0-0-00-0-0 0---0 0--0-0--0-000--000--00-0000-00 -00-0-00-0 -0-00-0-00 -00-0-00-0 0--000--00

--00---00-

Al advancing drug discovery research in pharma industry and academia

UNOVARTIS | Reimagining Medicine

Dr. Jessica Lanini ChemTalks, 25 September 2024

Introduction

- We published a perspective with colleagues from academia and industry
 - Raquel Rodriguez Perez (Novartis)
 - Andrea Volkamer (Saarland University)
 - Sereina Riniker (ETH Zurich)
 - Eva Nittinger (AstraZeneca)
 - Francesca Grisoni (Eindhoven University of Technology)
 - Emma Evertsson (AstraZeneca)
 - Nadine Schneider (Novartis)
- In this talk, we will summarize the main commonalities, differences, and opportunities for collaboration between industry and academia
- Examples will mostly focus on industry and, more specifically, our work at Novartis

Artificial Intelligence in the Life Sciences Volume 3, December 2023, 100056

Perspective

Machine learning for small molecule drug discovery in academia and industry

<u>Andrea Volkamer</u>^a, <u>Sereina Riniker</u>^b, <u>Eva Nittinger</u>^c, <u>Jessica Lanini</u>^d, <u>Francesca Grisoni</u>^{e f}, <u>Emma Evertsson</u>^c, <u>Raquel Rodríguez-Pérez</u>^d $\circ{2}$ $\circ{Mittinger}{Mittinger}$, <u>Nadine Schneider</u>^d $\circ{Mittinger}{Mittinger}$, <u>Mittinger</u>, <u>Mitti</u>

Show more \checkmark

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.ailsci.2022.100056 7

Under a Creative Commons license 🛪

open access

Machine learning in drug discovery

- Machine learning (ML) is applied at different stages of drug discovery
- Exemplary ML applications:
 - Predict the suitability of targets for drug discovery
 - Virtual screening of compounds for hit identification
 - Discovery of cell-specific biomarkers
 - Analyze gene signatures for patient sub-groups
 - Pathology image processing

ML for compound property predictions

- ML models can relate molecular structures to compound properties
 - Quantitative structure-property relationship (QSPR) modeling
- Compounds can be represented numerically, e.g. descriptors, fingerprints, graph neural networks
- ML algorithms can be used to find structural or chemical patterns that correlate with specific compound properties, e.g. activity against the target of interest, clearance

QSPR models in drug discovery

- Quantitative structure-property relationship (QSPR) modeling is a necessary component of numerous drug discovery projects
- QSPR models are usually implemented in a result-oriented fashion to find the most promising drug candidates
- ML is used to make better decisions faster and to accelerate the designmake-test-analyze (DMTA) cycle of novel molecular entities

Volkamer et al. 2023 AILSCI, 3, 100056

Model life cycle

- Realizing actionable predictive models in drug discovery can be summarized as an iterative cycle of 4 steps:
- 1. Training data preparation: requires understanding the experimental data for reliable curation
- 2. Model design and building: including steps such as architecture definition and hyperparameter tuning
- **3. Model validation**: performance estimation, which is crucial for prospective model use
- 4. Model deployment: the model is made available to users

U NOVARTIS |

Volkamer et al. 2023 AILSCI, 3, 100056

Reimagining Medicine

5 J. Lanini | ChemTalks 2024

1. Training data

- Model quality depends on the experimental data used for training, e.g.
 - Size: How many compounds (cpds)?
 - Chemical space: What is the coverage?
 - **Property space:** What is the dynamic range?
 - Diversity:

How biased is the data set?

- Errors:

How noisy is the data set?

U NOVARTIS |

Reimagining Medicine

Example: Permeability model (LE-MDCK)

Training data: Academia vs. Industry

 Data availability in the public domain has dramatically increased thanks to major databases such as ChEMBL or PubChem

 However, in-house (proprietary) data sets are typically larger

Academia

- More heterogeneous, imbalanced, and smaller data sets
- Mostly single measurement per compound
- Data are usually available for free sharing and re-utilization

Industry

- Larger, more homogenous data
- Access to assay protocols, which sometimes change over time
- Often multiple repeated measurements available
- Project-specific data sets may be small and biased

Size of ADME data sets used for modelling from in-house (Bayer, Novartis, Merck or Boehringer Ingelheim) and public sources

Reimagining Medicine

NOVARTIS |

7 J. Lanini | ChemTalks 2024

Model life cycle

- Realizing actionable predictive models in drug discovery can be summarized as an iterative cycle of 4 steps:
- 1. Training data preparation: requires understanding the experimental data for reliable curation
- 2. Model design and building: including steps such as architecture definition and hyperparameter tuning
- **3. Model validation**: performance estimation, which is crucial for prospective model use
- 4. Model deployment: the model is made available to users

b Novartis |

Volkamer et al. 2023 AILSCI, 3, 100056

Reimagining Medicine

2. Model design and building

- Model design starts with the **definition of the problem and prediction task**
- Model design is greatly affected by the applications, which are different in academia and industry even for the same QSAR/QSPR field

Standardizing model building and benchmarking – the PREFER framework^[1]

- The PREFER framework is written in Python and based on AutoSklearn^[2]
- Extensive comparison between different molecular representations and ML models
 - Features include fingerprints, 2D descriptors, and datadriven representations (CDDD^[3], MOLER^[4])
 - Models include single-task and multi task learning with hyperparameters' optimization
- PREFER models automatically give you an ensemble of models that provide strong baselines

LogD prediction: R2 for baseline random forest (RF + Fingerprints) and best PREFER model

[1] Lanini, J. et al. Submitted, 2023

[2] Feurer, Matthias, et al. Advances in neural information processing systems, 2015

[3] Winter R et al. Chemical science, 2019

[4] Maziarz, Krzysztof, et al. International Conference on Machine Learning. 2021.

10 J. Lanini | ChemTalks 2024

https://github.com/rdkit/PREFER

NOVARTIS | R

Reimagining Medicine

Local vs. Global models: What data shall we use for modeling?

- Global models perform better than the local models
- Only 7% of the local models present an improvement > 20% over the global models

Perceived advantages & disadvantages of local vs global models

- A More representative of the specific context of interest e.g., project
- More effort is needed & small dataset size (risk of overfitting)

Local model Global model

- A Higher generalization capabilities
- D Large amount of diverse data in the training set (risk of introducing noise)

Model life cycle

- Realizing actionable predictive models in drug discovery can be summarized as an iterative cycle of 4 steps:
- 1. Training data preparation: requires understanding the experimental data for reliable curation
- 2. Model design and building: including steps such as architecture definition and hyperparameter tuning
- **3. Model validation**: performance estimation, which is crucial for prospective model use
- 4. Model deployment: the model is made available to users

Volkamer et al. 2023 AILSCI, 3, 100056

3. Model validation

- Model validation is essential and focuses on different aspects in academia and industry
- Model generalizability can only be estimated with proper data splitting procedures and metrics

Example: Time-split vs. Random split

https://github.com/Novartis/UNIQUE/

Uncertainty Quantification: UNIQUE

- Quantify uncertainty of Machine Learning (ML) models
- Combines and benchmark multiple uncertainty quantification (UQ) methods
- Example on public LogD data*:

ternalScon

Input Dataframe

	canonical_sm	iles molecule	e_chembl_id			
COc1cc(F)ccc1-c1cncc(CNCC2CC2	!)n1 CHE	MBL1778865			
COc1cc(F	!)n1 CHE	CHEMBL1778865				
CN(MBL2010849					
standard_value	fingerprints	which_set	predictions			
1.80	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	TRAIN	1.889113			
1.80	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	TRAIN	1.889113			
1.80	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	CALIBRATION	2.633078			

Evaluation Metrics

		UQ Method	Subset	AUC Differences UQ vs. True Error	Spearman Correlation	Decreasing Coefficient	Increasing Coefficient	Performance Drop: High UQ vs. Low UQ (3-Bins)	Performance Drop: All vs. Low UQ (3- Birs)	Performance Drop: All vs. Low UQ (10- Bins)	Performance Drop: High UQ vs. Law UQ (10-Bins)	
	0	TanimotoDistance(Fingerprints)	TEST	0.204	0.322	4.452	0.153	2.001	1.443	1.597	2.694	
	1	EnsembleVariance[variance]	TEST	0.194	0.345	4.229	0.086	2.040	1.540	1.834	2.605	
	2 1	O/MSNI@TanimotoDistance(Fingerprints), EnsembleVariance(sariance))	TEST	0.256	0.217	4.340	0.960	1.526	1.185	1.171	1.712	
3	3	DHSNN[TanimotoDistance[fingerprints], predictions]	TEST	0.324	0.017	2.643	1.966	1.095	1.030	0.991	0.972	
	4	Dist2Var[TanimotoDistance[fingerprints]]	TEST	0.204	0.322	4.452	0.153	2.001	1.443	1.597	2.694	
	5	SumOfilariances(Dist2Var[TanimotoDistance]fingerprints[]]	TEST	0.186	0.360	4.406	0.035	2.130	1.533	1.822	2.919	
	6	IniqueRandomForestRegressor(fingerprints+UQmetrics+predictions) (11)	TEST	0.185	0.375	4350	0.147	2.214	1.616	1.775	2.607	
3	7	UniqueRandomForestRegressor[UQmetrics+predictions](11)	TEST	0.189	0.356	4.421	0.083	2.126	1.547	1.840	2.952	
	8	UniqueRandomForestRegressor(tvansformedUQmetrics+predictions)	TEST	0.187	0.365	4411	0.162	2.199	1.559	1.831	3.094	
Calibrati	0	n-based Evaluation Benchma	ırk	(c)	Prope	r Scor	ing R	ules E	valuati	on Bei	ıchmark	
		UQ Method Subset MACE	RMS	Œ					UQ Metho	d Subset	NLL CheckScore	
		Ecomobilitational TEET 0.14										1

0	EnsembleVariance[variance]	TEST	0.145	0.180	0	EnsembleVariance(variance)	TEST	1.294	0.237	0.469	2.359
1	Dist2Var[TanimotoDistance[fingerprints]]	TEST	0.138	0.173	1	Dist2Var[TanimotoDistance[tingerprints]]	TEST	1.228	0.238	0.472	2.367
2	SumOfVariances[Dist2Var[TanimotoDistance[fingerprints]]]	TEST	0.072	0.088	2	SumOfVariances[Dist2Var[TanimotoDistance]fingerprints]]]	TEST	1.308	0.247	0.488	2.52
3	${\sf UniqueRandomForestRegressor(fingerprints+UQmetrics+predictions)} () 1)$	TEST	0.164	0.202	3	${\sf UniqueRandomForestRegressor(Fingerprints+UQmetrics+predictions)} (1)$	TEST	1.226	0.237	0.469	2.36
4	UniqueRandomForestRegressor[UQmetrics+predictions]()1)	TEST	0.166	0.204	4	UniqueRandomForestRegressor[UQmetrics+predictions]](1)	TEST	1.231	0.237	0.469	2.35
5	${\sf UniqueRandomForestRegressor(transformed{\sf UQmetrics+predictions)})(1)}$	TEST	0.163	0.201	5	$\label{eq:constraint} Unique Random Forest Regress or (transformed UQ metrics + predictions) (1)$	TEST	1,213	0.236	0.468	2.34

Visualizations

14 J. Lanini | ChemTalks 2024

Model life cycle

- Realizing actionable predictive models in drug discovery can be summarized as an iterative cycle of 4 steps:
- 1. Training data preparation: requires understanding the experimental data for reliable curation
- 2. Model design and building: including steps such as architecture definition and hyperparameter tuning
- **3. Model validation**: performance estimation, which is crucial for prospective model use
- 4. Model deployment: the model is made available to users

Volkamer et al. 2023 AILSCI, 3, 100056

4. Model deployment

- The deployment of the trained ML model and includes several important tasks:
 - Model registration, documentation and guidelines, integration into existing tools and workflows, _ accessibility for non-data scientists, model ownership and accountability, monitoring, and model maintenance

J. Lanini | ChemTalks 2024 16

Reimagining Medicine

```
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
0000-0000-
0--0-0--0-
-000--000-
0-0-00-0-0
0---0
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
0000-0000-
0--0-0--0-
-000--000-
0-0-00-0-0
0---0
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
0000-0000-
0--0-0-
-000--000-
0-0-00-0-0
0---0
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
```

How can industrial and academic partners work together?

COLLABORATION EXAMPLES

Beyond the challenges: collaboration among industries and academia

- Different constraints in industry and academia may lead to difficulties in the collaboration
- Collaborating or publishing may require data sharing thus limiting industry involvement
- Different strategies to overcome the problem
 - Use proprietary data to demonstrate methodology and public data for in-depth analysis
 - Federated learning (e.g. MELLODDY, FLuID)
 - Open-source tools to simplify collaboration

Example of industry-academia collaboration: SIMPD (Simulated Medicinal chemistry Project Data)

J. Lanini | ChemTalks 2024

[1] Sheridan R., "Time-split cross-validation as a method for estimating the goodness of prospective prediction." Journal of chemical information and modeling, 2013 [2] Landrum, Gregory A., et al. "SIMPD: an Algorithm for Generating Simulated Time Splits for Validating Machine Learning Approaches." (2023).

Example of industry-industry collaboration: GenChem Collaborative development

[1] Maziarz, Krzysztof, et al. "Learning to Extend Molecular Scaffolds with Structural Motifs." International Conference on Learning Representations.

Conclusions

- Academia and industry are both driving the field of molecular ML research
- Models have permeated almost every step in the DMTA cycle, as we have shown with exemplary applications at Novartis
- Due to the fast emergence of new ML algorithms, the field needs to adapt quickly, including changes in collaboration – sharing data, protocols, code, and models – and multidisciplinary scientists' education
- More collaboration efforts between academia and industry to share data or code might lessen the gap between exploratory and applied research work
- Some examples of private-public collaborations were mentioned showcasing constellations in which science can be advanced in real-world project set-ups while keeping sensitive data private

```
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0 - 00 - 0 - 00
-00-0-00-0
0--000--00
0000-0000-
0--0-0--0-
-000--000-
0-0-00-0-0
0---0
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
0000-0000-
0--0-0--0-
-000--000-
0-0-00-0-0
0---0
--00---00-
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
0000-0000-
0--0-0--0-
-000--000-
0-0-00-0-0
0---0
0--0-0--0-
000--000--
00-0000-00
-00-0-00-0
-0-00-0-00
-00-0-00-0
0--000--00
```

Thank you

Themed Article Collection: "Women in Al" Artificial Intelligence in the Life Sciences Edited by Carolina Horta Andrade, Melissa Landon, Raquel Rodríguez-Pérez, Steve Gardner Read more Grégori Gerebtzoff Nadine Schneider Niko Fechner Nik Stiefl Elena Di Lascio Seid Hamzic Markus Trunzer **Bernard Faller** Sandrine Desrayaud Richard Lewis Finton Sirockin **Birgit Schoeberl** NIBR M&S Data Science NIBR CADD Intuence team GenChem team Other BR colleagues

Sereina Riniker Andrea Volkamer Eva Nittiger Francesca Grisoni Emma Evertsson Greg Landrum Jose Jimenez-Luna Kenza Amara Other MSR colleagues

U NOVARTIS

Reimagining Medicine