Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction

publication · 8 years ago
by Alan R. Katritzky, Minati Kuanar, Svetoslav Slavov, C.Dennis Hall, Mati Karelson, Iris Kahn, Dimitar A. Dobchev (Tallinn University of Technology, MolCode)
No abstract provided, Table of Contents 1. Introduction 1.1. Overview of QSPR Studies 1.2. Scope of the Review 1.3. QSPR Approach 2. Data Input for QSPR Modeling 2.1. Data Set Selection 2.2. Geometry Optimization 2.3. Descriptor Calculation 3. Modeling Procedures 3.1. Multivariate Approaches—Linear Aspect 3.1.1. Multilinear Regression 3.1.2. Principal Component Regression/Analysis and Partial Least Squares Analysis 3.1.3. Chance Correlations 3.2. Multivariate Approaches—Nonlinear Approaches 3.2.1. Artificial Neural Networks 3.2.2. Genetic Algorithms 3.2.3. Support Vector Machines (SVMs) 3.3. Expert Systems 3.4. Model Selection 3.5. Model Validation 3.5.1. Internal Validation 3.5.2. External Validation 3.6. Model Interpretation 4. Simple Physical Properties Involving Single Molecular Species 4.1. Boiling Points 4.2. Melting Points 4.3. Viscosities 4.4. Refractive Indices 4.5. Densities of Organic Liquids 4.6. Dielectric Constants 4.7. Polarizabilities 4.8. Vapor Pressures 4.9. Surface Tension 4.10. Critical Temperatures 4.11. Critical Pressures 4.12. Heats of Vaporization 4.13. Heats of Formation 4.14. Entropies 4.15. Rotational Activation Energies for Amides 5. Complex Physical Properties Involving Interactions between Different Molecules 5.1. Solubilities 5.1.1. Solubility of Liquids and Solids 5.1.2. Aqueous Solubility of Gases and Vapors 5.1.3. Activity Coefficients at Infinite Dilution 5.2. Partition Coefficients 5.2.1. Octanol-Water Partition Coefficient 5.2.2. Aqueous Biphasic Partitioning 5.2.3. Gas to Olive Oil Partition Coefficients 5.3. GC Retention Indices 5.4. GC Response Factors 5.5. Gas Phase Homolysis 5.5.1. Gas Phase Ion Mobility Constants 5.6. Soil Sorption Coefficients 5.7. Solvent Scales 5.8. Surfactant Properties 5.8.1. Critical Micelle Concentrations 5.8.2. Cloud Points 5.9. Cyclodextrin Complexation Free Energies 5.10. UV Spectral Intensities 6. Chemical Properties 6.1. Lithium Cation Basicities 6.2. Stability Constants 6.3. Rate Constants 6.3.1. Decarboxylation Rates 6.3.2. Hydroxyl Radical Rate Constants 6.3.3. Methyl Radical Addition Rate Constants 6.4. Acid Dissociation Constants 6.5. Thermal Decomposition Temperatures of Nonlinear Optical (NLO) Chromophores 6.6. Chain Transfer Constants 6.7. Flash Points and Autoignition Temperatures 6.8. Octane and Cetane Numbers 6.9. Rubber Vulcanization Rates 6.10. Glass Transition Temperatures 6.11. Contact Angles for Pharmaceutical Solids7. Summary and Future Prospects
Visit publication