Phenotype Triangulation and Beyond with ChemAxon
A plethora of disease-related information can be found in the biomedical literature. However, many of these sources are unstructured and are not designed with searching in mind. SciBite has developed a method that combines Semantic Analytics and Machine Learning to unlock the potential of biomedical literature and quantify disease similarities based on their phenotypic signatures. Our method involves mining the scientific literature for potential phenotype similarities, ranking those similarities, and creating an integrated knowledge-base for visual and computational exploration. Combining our technique with SciBite's ChemAxon integration further improves the potential of this knowledge-base for performing drug discovery and repurposing at-scale.
Related content
ICCS 2022 - Translating data to predictive models
Biological, chemical and physical properties of molecules are encoded in their molecular structure....
Cheminfo Stories Virtual UGM 2021 Asia Pacific Edition: Deep dive in the future of chemical patent drafting and in-house IP management
Writing chemical patents with Markush claims is a time-consuming, complex and business-critical...
Cheminfo Stories 2021 Virtual UGM Asia Pacific Edition: Design of new compounds from the available chemical space
In computational compound design workflows, the analysis of the available chemical space is an...
Cheminfo Stories 2021 Virtual UGM | Boost analytical experiments with phys-chem properties
TRY CHEMICALIZE Log in for videos & slides