Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples
Vacuum-assisted evaporative concentration (VEC) was successfully applied and validated for the enrichment of 590 organic substances from river water and wastewater. Different volumes of water samples (6 mL wastewater influent, 15 mL wastewater effluent, and 60 mL river water) were evaporated to 0.3 mL and finally adjusted to 0.4 mL. 0.1 mL of the concentrate were injected into a polar reversed-phase C18 liquid chromatography column coupled with electrospray ionization to high-resolution tandem mass spectrometry. Analyte recoveries were determined for VEC and compared against a mixed-bed multilayer solidphase extraction (SPE). Both approaches performed equally well (≥ 70% recovery) for a vast number of analytes (n = 327), whereas certain substances were especially amenable to enrichment by either SPE (e.g., 4-chlorobenzophenone, logDow,pH7 4) or VEC (e.g., TRIS, logDow,pH7 − 4.6). Overall, VEC was more suitable for the enrichment of polar analytes, albeit considerable signal suppression (up to 74% in river water) was observed for the VEC-enriched sample matrix. Nevertheless, VEC allowed for accurate and precise quantification down to the sub-nanogram per liter level and required no more than 60 mL of the sample, as demonstrated by its application to several environmental water matrices. By contrast, SPE is typically constrained by high sample volumes ranging from 100 mL (wastewater influent) to 1000 mL (river water). The developed VEC workflow not only requires low labor cost and minimum supervision but is also a rapid, convenient, and environmentally safe alternative to SPE and highly suitable for target and non-target analysis.
Related content
Predicting pKa
One of the most important physicochemical properties of small molecules and macromolecules are the...
Calculate on the cloud
In order to increase the flexibility, access and integrability, Calculators and Predictors have...
Cheminfo Stories 2021 Virtual UGM | Boost analytical experiments with phys-chem properties
TRY CHEMICALIZE Log in for videos & slides
Cheminfo Stories 2021 Virtual UGM | Enhancing Sibylla’s innovative drug discovery platform with ChemAxon
Sibylla's innovative pharmacological platform is aimed at discovering new drugs for untreatable...