A drug pocket at the lipid bilayer–potassium channel interface
Many pharmaceutical drugs against neurological and cardiovascular disorders exert their therapeutic effects by binding to specific sites on voltage-gated ion channels of neurons or cardiomyocytes. To date, all molecules targeting known ion channel sites bind to protein pockets that are mainly surrounded by water. We describe a lipid-protein drug-binding pocket of a potassium channel. We synthesized and electrophysiologically tested 125 derivatives, analogs, and related compounds to dehydroabietic acid. Functional data in combination with docking and molecular dynamics simulations mapped a binding site for small-molecule compounds at the interface between the lipid bilayer and the transmembrane segments S3 and S4 of the voltage-sensor domain. This fundamentally new binding site for small-molecule compounds paves the way for the design of new types of drugs against diseases caused by altered excitability.
Related content
How to Marvin: UI Overview
The How to Marvin video series walks you through the basics of drawing with Marvin. This episode...
How to Marvin: Chemical Naming
The How to Marvin video series walks you through the basics of drawing with Marvin. This episode...
How to Marvin: Search Bar
The How to Marvin video series walks you through the basics of drawing with Marvin. This episode...
How to Marvin: Name to Structure Conversion
The How to Marvin video series walks you through the basics of drawing with Marvin. This episode...