A new series (6) of C5-curcuminoid derivatives (2E,6E-2,6-dibenzylidene-4-hydroxycyclohexanones) is described here with their evaluation for in vitro antiproliferative activities. Evaluation of 31 compounds against human A2780 (ovarian), C33A (cervix) and MDA-MB-231 (breast) cancer cell lines was performed to obtain structure activity relation data. The best performer was (2E,6E)-2,6-bis(3′-nitrobenzylidene)-4-hydroxycyclohexanone (6h) with IC50 values of 0.68 μM (A2780), 0.69 μM (C33A) and 0.92 μM (MDA-MB-231) compared to cisplatin with 1.30 μM, 3.69 μM and 19.13 μM, respectively. According to calculated physicochemical properties some members in series 6, namely (2E,6E)-2,6-bis[(4′-pyridinyl)methylene]-4-hydroxycyclohexanone (6p) [IC50 = 0.76 μM (A2780), 2.69 μM (C33A), 1.28 μM (MDA-MB-231)] seem to have improved bioavailability compared to curcumin. Selected members of series 6 were involved in circular dichroism spectroscopic measurements in order to determine their interaction with natural DNA. Based on these data, we conclude that these derivatives do not bind to DNA in vitro. A proposal is summarized based on mass spectrometric assessment for fingerprint analysis in biological research of such C5-curcuminoids.
A novel cluster of C5-curcuminoids: design, synthesis, in vitro antiproliferative activity and DNA binding of bis(arylidene)-4-cyclanone derivatives based on 4-hydroxycyclohexanone scaffold
Posted by
Péter Horváth
on 12 09 2019
Related content
03 10 2022
< 1 minute
Calculate on the cloud
In order to increase the flexibility, access and integrability, Calculators and Predictors have...
12 05 2022
< 1 minute
Coupling stabilizers open KV1-type potassium channels
ABSTRACT: The opening and closing of voltage-gated ion channels are regulated by voltage sensors...
13 11 2021
< 1 minute
Cheminfo Stories 2021 Virtual UGM | Boost analytical experiments with phys-chem properties
TRY CHEMICALIZE Log in for videos & slides
13 11 2021
< 1 minute
Cheminfo Stories 2021 Virtual UGM | Enhancing Sibylla’s innovative drug discovery platform with ChemAxon
Sibylla's innovative pharmacological platform is aimed at discovering new drugs for untreatable...