C-H Functionalizations by Palladium Carboxylates: The Acid Effect

Posted by
Jiri Van
on 2020-09-12

C-H Functionalizations by Palladium Carboxylates: The Acid Effect

Finding optimal reaction conditions is usually complex, requires many experiments, and is therefore demanding in terms of human, financial, and environmental resources. This work provides a simple workflow for easier design of popular palladium-catalyzed C−H functionalization reactions, where the active palladium catalysts contain carboxylate ligands. The key factor for optimizing reaction conditions is to find a balance between two opposing effects of the carboxylic acid in the reaction mixture: generation of more reactive palladium catalyst versus deactivation of a substrate by its protonation.

Visit the publication

 

Finding optimal reaction conditions is usually complex, requires many experiments, and is therefore demanding in terms of human, financial, and environmental resources. This work provides a simple workflow for easier design of popular palladium-catalyzed C−H functionalization reactions, where the active palladium catalysts contain carboxylate ligands. The key factor for optimizing reaction conditions is to find a balance between two opposing effects of the carboxylic acid in the reaction mixture: generation of more reactive palladium catalyst versus deactivation of a substrate by its protonation.

Visit the publication