Characterization of the Penetration of the Blood–Brain Barrier by High-Performance Liquid Chromatography (HPLC) Using a Stationary Phase with an Immobilized Artificial Membrane
The biological activity of drugs on organisms is associated with the pharmacokinetic properties, such as the ability to penetrate through environments of varying polarity such as cellular organelles. In this area, particular attention is turned to the physicochemical properties that determine the potential of drugs to pass across the blood–brain barrier and thus to act on the central nervous system. In this study, special effort has been devoted to the simulation of passive diffusion of seven drugs (propranolol, ibuprofen, atenolol, promazine, chlorpromazine, imipramine, and desipramine) through the blood–brain barrier by high-performance liquid chromatography (HPLC) using a column with an immobilized artificial membrane. Gradient reverse elution was used to develop a linear correlation model for the capacity factors kIAM and the in vivo logarithmic values of brain-to-blood drug concentration ratios (log BB) with R of 0.9851. Eleven additional pharmaceuticals were determined by the same method to predict their potential to penetrate the blood–brain barrier. The reported analytical method represents an alternative tool for rapid and noninvasive assessment of the absorption properties of chemicals, especially for the development of novel drugs. The retention of the studied compounds on the immobilized artificial membrane column was also compared with three other C18-based stationary phases. Herein, the results of the HPLC determination of drugs using an immobilized artificial membrane are briefly discussed with respect to a general application of the method for evaluating a broader spectrum of pharmaceutical compounds.
Related content
Predicting pKa
One of the most important physicochemical properties of small molecules and macromolecules are the...
Calculate on the cloud
In order to increase the flexibility, access and integrability, Calculators and Predictors have...
Coupling stabilizers open KV1-type potassium channels
ABSTRACT: The opening and closing of voltage-gated ion channels are regulated by voltage sensors...
Cheminfo Stories 2021 Virtual UGM | Boost analytical experiments with phys-chem properties
TRY CHEMICALIZE Log in for videos & slides