This paper introduces two generative topographic mapping (GTM) methods that can be used for data visualization, regression analysis, inverse analysis, and the determination of applicability domains (ADs). In GTM-multiple linear regression (GTM-MLR), the prior probability distribution of the descriptors or explanatory variables (X) is calculated with GTM, and the posterior probability distribution of the property/activity or objective variable (y) given X is calculated with MLR; inverse analysis is then performed using the product rule and Bayes’ theorem. In GTM-regression (GTMR), X and y are combined and GTM is performed to obtain the joint probability distribution of X and y; this leads to the posterior probability distributions of y given X and of X given y, which are used for regression and inverse analysis, respectively. Simulations using linear and nonlinear datasets and quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) datasets confirm that GTM-MLR and GTMR enable data visualization, regression analysis, and inverse analysis considering appropriate ADs.
Data Visualization, Regression, Applicability Domains and Inverse Analysis Based on Generative Topographic Mapping
Posted by
Hiromasa Kaneko
on 12 09 2019
Related content
12 05 2022
< 1 minute
Coupling stabilizers open KV1-type potassium channels
ABSTRACT: The opening and closing of voltage-gated ion channels are regulated by voltage sensors...
12 11 2021
< 1 minute
Responding to the Challenge Posed by the Generic Control of Substances
Drug monitoring organizations report that new psychoactive substances continue to emerge, posing...
12 10 2021
< 1 minute
Boost analytical experiments with phys-chem properties
Physicochemical properties have a fundamental impact on analytical experiment conditions,...
12 09 2021
< 1 minute
Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells
Abstract Activated carbons from Brazil nutshells were produced by ZnCl2-activation at different...