LigQ: A Webserver to Select and Prepare Ligands for Virtual 2 Screening

Posted by
Xavier Barril
on 12 09 2019

LigQ: A Webserver to Select and Prepare Ligands for Virtual 2 Screening

Virtual screening is a powerful methodology to search for new small molecule inhibitors against a desired molecular target. Usually, it involves evaluating thousands of compounds (derived from large databases) in order to select a set of potential binders that will be tested in the wet-lab. The number of tested compounds is directly proportional to the cost, and thus, the best possible set of ligands is the one with the highest number of true binders, for the smallest possible compound set size. Therefore, methods that are able to trim down large universal data sets enriching them in potential binders are highly appreciated. Here we present LigQ, a free webserver that is able to (i) determine best structure and ligand binding pocket for a desired protein, (ii) find known binders, as well as potential ligands known to bind to similar protein domains, (iii) most importantly, select a small set of commercial compounds enriched in potential binders, and (iv) prepare them for virtual screening. LigQ was tested with several proteins, showing an impressive capacity to retrieve true ligands from large data sets, achieving enrichment factors of over 10%. LigQ is available at http://ligq.qb.fcen.uba.ar/.

Visit the publication

Virtual screening is a powerful methodology to search for new small molecule inhibitors against a desired molecular target. Usually, it involves evaluating thousands of compounds (derived from large databases) in order to select a set of potential binders that will be tested in the wet-lab. The number of tested compounds is directly proportional to the cost, and thus, the best possible set of ligands is the one with the highest number of true binders, for the smallest possible compound set size. Therefore, methods that are able to trim down large universal data sets enriching them in potential binders are highly appreciated. Here we present LigQ, a free webserver that is able to (i) determine best structure and ligand binding pocket for a desired protein, (ii) find known binders, as well as potential ligands known to bind to similar protein domains, (iii) most importantly, select a small set of commercial compounds enriched in potential binders, and (iv) prepare them for virtual screening. LigQ was tested with several proteins, showing an impressive capacity to retrieve true ligands from large data sets, achieving enrichment factors of over 10%. LigQ is available at http://ligq.qb.fcen.uba.ar/.

Visit the publication