Sorption linearity and reversibility are implicit in models for the fate and transport of per- and polyfluoroalkyl substances (PFAS). In this study, however, we found that the sorption of cationic and zwitterionic PFAS in natural soils was highly nonlinear. The nonlinearity was so severe that it led to a variation in the coefficient of sorption by several orders of magnitude over the experimental concentration range. This implies a considerable increase in sorption as concentration falls in the natural environment. Sorption of cationic PFAS correlated strongly with the soil organic matter (SOM) content and was reversible in all soils. Sorption of zwitterionic PFAS, on the other hand, displayed concentration-dependent hysteresis in soils with a low SOM content. The irreversibility, which was associated with neither SOM, pore deformation, nor surface complexation, was likely caused by the entrapment of molecules in porous structures within inorganic components of soil aggregates. Furthermore, electrostatic interactions with negatively charged soil constituents and the hydrophobic effect were found to be major sorption driving forces for cationic/zwitterionic PFAS at low and high concentrations, respectively. The maximum electrostatic potential of PFAS ions, computed using density functional theory, was found to be a useful predictor of the sorption of ionic PFAS species.
Sorption and Desorption Mechanisms of Cationic and Zwitterionic Per- and Polyfluoroalkyl Substances in Natural Soils: Thermodynamics and Hysteresis
Posted by
Feng Xiao
on 12 09 2020
Related content
19 04 2023
< 1 minute
Predicting pKa
One of the most important physicochemical properties of small molecules and macromolecules are the...
03 10 2022
< 1 minute
Calculate on the cloud
In order to increase the flexibility, access and integrability, Calculators and Predictors have...
12 05 2022
< 1 minute
Coupling stabilizers open KV1-type potassium channels
ABSTRACT: The opening and closing of voltage-gated ion channels are regulated by voltage sensors...
13 11 2021
< 1 minute
Cheminfo Stories 2021 Virtual UGM | Boost analytical experiments with phys-chem properties
TRY CHEMICALIZE Log in for videos & slides