Investigation of New Orexin 2 Receptor Modulators Using In Silico and In Vitro Methods
The neuropeptides, orexin A and orexin B (also known as hypocretins), are produced in hypothalamic neurons and belong to ligands for orphan G protein-coupled receptors. Generally, the primary role of orexins is to act as excitatory neurotransmitters and regulate the sleep process. Lack of orexins may lead to sleep disorder narcolepsy in mice, dogs, and humans. Narcolepsy is a neurological disorder of alertness characterized by a decrease of ability to manage sleep-wake cycles, excessive daytime sleepiness, and other symptoms, such as cataplexy, vivid hallucinations, and paralysis. Thus, the discovery of orexin receptors, modulators, and their causal implication in narcolepsy is the most important advance in sleep-research. The presented work is focused on the evaluation of compounds L1–L11 selected by structure-based virtual screening for their ability to modulate orexin receptor type 2 (OX2R) in comparison with standard agonist orexin-A together with their blood-brain barrier permeability and cytotoxicity. We can conclude that the studied compounds possess an affinity towards the OX2R. However, the compounds do not have intrinsic activity and act as the antagonists of this receptor. It was shown that L4 was the most potent antagonistic ligand to orexin A and displayed an IC50 of 2.2 μM, offering some promise mainly for the treatment of insomnia.
Related content
Predicting pKa
One of the most important physicochemical properties of small molecules and macromolecules are the...
Coupling stabilizers open KV1-type potassium channels
ABSTRACT: The opening and closing of voltage-gated ion channels are regulated by voltage sensors...
Responding to the Challenge Posed by the Generic Control of Substances
Drug monitoring organizations report that new psychoactive substances continue to emerge, posing...
Boost analytical experiments with phys-chem properties
Physicochemical properties have a fundamental impact on analytical experiment conditions,...